Recommendation System

sfondo

RECOMMENDATION SYSTEM

Una nota azienda multinazionale di telefonia aveva la necessità di estendere le funzionalità della propria App per la formazione interna dei lavoratori e lo sviluppo di competenze professionali, manageriali e di leadership, attraverso corsi di apprendimento mirati.

Il superamento di questi corsi gratuiti, permetteva l’abilitazione alla vendita di particolari prodotti o servizi, ma tutto ciò riscontrava problemi rendendo l’applicazione poco efficace.

TecnologiE IMPLEMENTATE

Machine Learning

Python

Apache Spark

Hadoop

Problema

Le newsletter erano poco efficaci poiché prive di un filtraggio che riconoscesse gusti e necessità degli utenti. Gli argomenti contenuti nelle mail non rispecchiavano gli interessi dei destinatari, riscontrando quindi che alcuni dipendenti non terminavano la videolezione, abbandonando la piattaforma.

SOLUZIONE

Per risolvere queste problematiche, Chiron ha sviluppato un sistema di recommendation. Lo scopo era quello di aumentare la permanenza degli utenti nella piattaforma, riducendo al minimo il Churn Rate, ovvero il tasso di abbandono. Evitare l’abbandono, anticipando le esigenze dei propri utenti si riflette in campagne di marketing più efficaci e, infine, in decisioni aziendali mirate al proprio target.

STEP 1

Creazione del Data Lake, ovvero un archivio di dati in grado di acquisire basi di dati statistici, chiamate «proiezioni» sull’andamento dell’App; in questo modo riesce a verificare la quantità di corsi iniziati e completati.

STEP 2

Marketing Automation, con lo scopo di inviare newsletter personalizzate in base agli interessi degli utenti registrati, analizzati attraverso:
– Completamento dei corsi;
– Superamento degli esami;
– Compilazione dei questionari.

STEP 3

Comprensione dei comportamenti d’acquisto degli utenti attraverso la Customer Behaviour: lo scopo è individuare i prodotti e i marchi che meglio rispondono alle necessità e preferenze del target di riferimento, selezionando i clienti più attivi e disponibili all’acquisto.

STEP 4

Recommendation System, attraverso un attento filtraggio dei dati, è possibile creare raccomandazioni personalizzate al fine di suggerire specifici prodotti all’utente, accompagnandolo nella scelta ed evitando la visualizzazione di contenuti non rilevanti.

RISULTATI

Gli istruttori hanno potuto sfruttare la logica del recommendation system, permettendo dei corretti suggerimenti dei corsi ad ogni singolo utente. Dai grafici si può evincere l’aumento del tasso di conversione di un utente invitato ad utente registrato, da un 23% ad un 47% (+105%).
In aggiunta, la percentuale del completamento dei corsi, che si attestava al 42%, è aumentata fino al 79% (+90%).

Vuoi una soluzione personalizzata per il tuo business?

Condividi su facebook
Facebook
Condividi su twitter
Twitter
Condividi su linkedin
LinkedIn

Popular Post